Search results for "Mullerian mimicry"

showing 5 items of 5 documents

Geographic mosaic of selection by avian predators on hindwing warning colour in a polymorphic aposematic moth

2020

AbstractWarning signals are predicted to develop signal monomorphism via positive frequency-dependent selection (+FDS) albeit many aposematic systems exhibit signal polymorphism. To understand this mismatch, we conducted a large-scale predation experiment in four locations, among which the frequencies of hindwing warning coloration of aposematic Arctia plantaginis differ. Here we show that selection by avian predators on warning colour is predicted by local morph frequency and predator community composition. We found +FDS to be strongest in monomorphic Scotland, and in contrast, lowest in polymorphic Finland, where different predators favour different male morphs. +FDS was also found in Geo…

0106 biological sciencespredatorspredator-prey interactionsFrequency-dependent selectionFREQUENCY-DEPENDENT SELECTIONDIVERSITYMoths01 natural sciencesMüllerian mimicrytäpläsiilikäsPredationmuuntelu (biologia)Arctia plantaginisPredatorFinland0303 health sciencesMonomorphismsaaliseläimetluonnonvalintaEcologywood tiger mothVARIABLE SELECTIONDIFFERENTIATIONPOISON FROG1181 Ecology evolutionary biologyMULLERIAN MIMICRYvaroitusväriColorZoologyAposematismBiology010603 evolutionary biologyBirds03 medical and health sciencesArctia plantaginisAposematismPARASEMIAcolour polymorphismpetoeläimetAnimalsaposematismfrequency‐dependent selectionEcology Evolution Behavior and SystematicsSelection (genetic algorithm)030304 developmental biologysignal variationsignal convergence010604 marine biology & hydrobiologypredator–prey interactionsEVOLUTIONSIGNALScotlandCommunity compositionPredatory Behavior
researchProduct

Diversity in warning coloration: selective paradox or the norm?

2019

Aposematic theory has historically predicted that predators should select for warning signals to converge on a single form, as a result of frequency-dependent learning. However, widespread variation in warning signals is observed across closely related species, populations and, most problematically for evolutionary biologists, among individuals in the same population. Recent research has yielded an increased awareness of this diversity, challenging the paradigm of signal monomorphy in aposematic animals. Here we provide a comprehensive synthesis of these disparate lines of investigation, identifying within them three broad classes of explanation for variation in aposematic warning signals: …

varoitusväripolytypismFREQUENCY-DEPENDENT SELECTIONModels BiologicalSEXUAL SELECTIONpolymorphismPOLYMORPHIC MULLERIAN MIMICRYSex FactorsmonimuotoisuusAnimalsaposematismEcosystemGRAPHOSOMA-LINEATUM HETEROPTERAPolymorphism GeneticINDO-WEST PACIFICEVOLUTIONARY SIGNIFICANCEBiological MimicryAge FactorsTemperaturePOISON FROGSOriginal ArticlesBiodiversityPigments BiologicalBiological EvolutionCORAL-SNAKE PATTERNcontinuous variationmuunteluBiological Variation PopulationPredatory Behavior1181 Ecology evolutionary biologyHISTORY TRADE-OFFSOriginal ArticleHELICONIUS BUTTERFLIES
researchProduct

The impact of life stage and pigment source on the evolution of novel warning signal traits

2021

Our understanding of how novel warning color traits evolve in natural populations is largely based on studies of reproductive stages and organisms with endogenously produced pigmentation. In these systems, genetic drift is often required for novel alleles to overcome strong purifying selection stemming from frequency-dependent predation and positive assortative mating. Here, we integrate data from field surveys, predation experiments, population genomics, and phenotypic correlations to explain the origin and maintenance of geographic variation in a diet-based larval pigmentation trait in the redheaded pine sawfly (Neodiprion lecontei), a pine-feeding hymenopteran. Although our experiments c…

varoitusvärimäntypistiäisetecological geneticsPopulationFREQUENCY-DEPENDENT SELECTIONevoluutioAposematismPredationravintoNegative selectionchemical defenseGenetic driftAposematismpolytypic colorationGeneticsAnimalsaposematismCOLORPOPULATION-GENETICSmuuntelu (biologia)educationEcology Evolution Behavior and Systematicseducation.field_of_studybiologyPigmentationfungiAssortative matingcarotenoidsfood and beverageshost adaptationbiology.organism_classificationBiological EvolutionHymenopterakarotenoiditREAD ALIGNMENTNeodiprion leconteiSawflyCHEMICAL DEFENSEPhenotypeEvolutionary biologyTRADE-OFFLarvaPredatory Behavior1181 Ecology evolutionary biologySHIFTING BALANCEWOOD TIGER MOTHGeneral Agricultural and Biological SciencesGENETIC CORRELATIONSMULLERIAN MIMICRYEvolution
researchProduct

Why aren't warning signals everywhere? : On the prevalence of aposematism and mimicry in communities

2021

Warning signals are a striking example of natural selection present in almost every ecological community - from Nordic meadows to tropical rainforests, defended prey species and their mimics ward off potential predators before they attack. Yet despite the wide distribution of warning signals, they are relatively scarce as a proportion of the total prey available, and more so in some biomes than others. Classically, warning signals are thought to be governed by positive density-dependent selection, i.e. they succeed better when they are more common. Therefore, after surmounting this initial barrier to their evolution, it is puzzling that they remain uncommon on the scale of the community. He…

0106 biological sciencesvaroitusväri570predator-prey interactionsFREQUENCY-DEPENDENT SELECTIONFrequency-dependent selectionPopulationBatesian mimicryAposematismMacroevolutionModels Biological010603 evolutionary biology01 natural sciencesRISK-TAKINGGeneral Biochemistry Genetics and Molecular BiologyMüllerian mimicryPredationANTIPREDATOR DEFENSES03 medical and health sciencesPrevalenceAnimalsaposematismecological nicheeducationMullerian mimicryBODY-SIZE030304 developmental biology0303 health scienceseducation.field_of_studyMüllerian mimicryEcologyBiological Mimicrymimikrypredator–prey interactionseliöyhteisötBiological EvolutionBatesian mimicrysaalistusekologinen lokeroCORAL-SNAKE PATTERNCHEMICAL DEFENSEGeographyCOLOR PATTERNPredatory Behavior1181 Ecology evolutionary biologyMimicrySHIFTING BALANCEGeneral Agricultural and Biological Sciencescommunity ecology
researchProduct

The Effect of Predator Population Dynamics on Batesian Mimicry Complexes.

2022

Understanding Batesian mimicry is a classic problem in evolutionary biology. In Batesian mimicry, a defended species (the model) is mimicked by an undefended species (the mimic). Prior theories have emphasized the role of predator behavior and learning as well as evolution in model-mimic complexes but have not examined the role of population dynamics in potentially governing the relative abundances and even persistence of model-mimic systems. Here, we examined the effect of the population dynamics of predators and alternative prey on the prevalence of warning-signaling prey composed of models and mimics. Using optimal foraging theory and signal detection theory, we found that the inclusion …

varoitusväriJACAMARS GALBULA-RUFICAUDAInformationSystems_INFORMATIONINTERFACESANDPRESENTATION(e.g.HCI)apparent competitionPopulationAVIAN PREDATORSPopulation DynamicsevoluutioBiologyALTERNATIVE PREYModels BiologicalEMPIRICAL-TESTInformationSystems_MODELSANDPRINCIPLESsignal detectionIMPERFECT MIMICRYAnimalsaposematismeducationtheoryPredatorEcology Evolution Behavior and Systematicssignal detection theoryeducation.field_of_studyBiological MimicrymimikryComputingMilieux_PERSONALCOMPUTINGeliöyhteisötdynamicspopulaatiodynamiikkaBiological EvolutionBatesian mimicrySIGNAL-DETECTION-THEORYCORAL-SNAKE PATTERNNATURAL-SELECTIONComputingMethodologies_PATTERNRECOGNITIONEvolutionary biologyPredatory Behavior1181 Ecology evolutionary biologywarning signalCOMMUNITY STRUCTUREcommunity ecologyMULLERIAN MIMICRYThe American naturalist
researchProduct